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Abstract. The effect of a tunnelling electron on the tunnel barrier shape is studied at the limit
where a static image charge model is applicable. It is shown that the single-electron tunnelling
current through an ultrasmall voltage-biased junction is not proportional to the junction area because
of charging at the electrodes. Simple expressions are presented for the effective static barrier
shape of a voltage-biased junction and of a junction in a circuit, the former of which accounts
for the anomalous current scaling. A possible experimental arrangement for verifying the scaling
relationship is suggested, with numerical results.

A tunnelling electron can affect the tunnel barrier shape, giving rise to such effects as barrier
lowering due to the image potential [1]. This effect is independent of the size of the tunnel
junction and lowers the barrier energy. In this article, we address the junction-size-dependent
influence of a tunnelling electron on the barrier shape. It is caused by electrode charging due
to the escape of a single electron into the insulating layer and, as such, becomes appreciable
as the size of the electrode is reduced. There has been some controversy over the proper
theoretical description of a size-dependent barrier renormalization [2–5], so the issue needs to
be subjected to scrutiny. Here we use a simple model that is sufficient to give a clear physical
picture of the effect and estimate possible parameters for experimental verification.

We assume that the systems considered have ideal zero-impedance leads and follow the
global rule [6] of single-electron transport. The global rule is characterized by the charge
redistribution in the entire circuit being so fast that it reaches an equilibrium as soon as
tunnelling finishes. We take up two limiting cases: a voltage-biased single junction (figure 1(a))
and a single-electron box [7], which consists of a tunnel junction, a capacitor and a voltage
source (figure 1(b)). The single-electron box can be transformed into an equivalent single-
junction system with an open switch (SW), shown in figure 2. The voltage source V is provided
to give the initial voltage Vi (=V ) and the switch is kept open throughout the tunnelling
event. In general, a tunnel junction in a circuit with one or more isolated islands can be
transformed into the equivalent system shown in figure 2. The effective capacitance is given
by C = e/(Vi − Vf)¶, where Vi is the voltage across the junction before tunnelling begins and
Vf is that after tunnelling. For instance, C = Cj + Cg for the single-electron box. The change

‖ Also with the Department of Information and Communication Engineering, The University of Tokyo, Tokyo 113-
8656, Japan.
¶ Applicable only if Vi �= Vf —that is, SW is open. C for a voltage-biased junction is the junction capacitance itself.
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Figure 1. Schematic diagrams of the circuits and the corresponding tunnel barrier profiles
considered. The contribution from the image potential is not shown, for clarity. (a) A voltage-
biased single junction. The dotted line represents the barrier shape when the charging effect is
neglected. (b) A single-electron box.
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Figure 2. Tunnelling in a parallel-plate tunnel junction.

in electrostatic free energy associated with tunnelling is given by �F = − 1
2e(Vi +Vf) whether

or not SW is open. If SW is open (Vi �= Vf ), we may rewrite this as �F = −e(CVi − e/2)/C,
where e/2 is the critical charge Qc [8] for the reduced junction. This expression is related to
the better-known expression �F = −e(Q − Qc)/Cj [8] with Q = CjVi and Qc = eCj/2C.

Now let us look at the barrier shape using the ideal parallel-plate tunnel junction model.
Assuming that there is at most one electron within the barrier, we start from the following
Hamiltonian:

H = p2

2m
+ Ub(x) − eφim(x) − eφc(x) (1)

where Ub(x) is the bare-barrier potential energy, φim(x) the normal image potential and φc(x)

the scalar potential at x created by electrode charging when the electron is at x. If the barrier
traversal time τBL [9] and the characteristic frequency ωs of the electrodes’ surface excitation
modes (e.g. surface plasmons) that couple to the tunnelling electron satisfy the relationship
ωsτBL � 1, φim(x) can be understood in terms of static image charges [1,10]. Henceforth we
assume this condition to be fulfilled.

The difference between φim(x) and φc(x) is this. The image potential φim(x) actually
arises from nonuniform charge distribution on electrode surfaces. The image plane lies in
between a charge and its image, so the image charge does not affect the total amount of charge
in an electrode nor its voltage. In other words, φim(x) originates from the components of the
interaction between the electrode charge and the tunnelling charge parallel to the electrode
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surfaces. This means that the contribution from the component perpendicular to the electrode
surfaces is not included in φim(x). φc(x) is the potential that stems from the perpendicular
component. As will be shown below, φc(x) may be size dependent. It is negligible as long as
the electrodes are not too small, but could effect a noticeable change in junction characteristics
otherwise.

First we examine the voltage-biased single junction (SW closed). The total image charge
on the left side of the junction is Ql = [1 − (x/d)]e and that on the right side is Qr = (x/d)e.
Ql and Qr are supplied from the voltage source. These can be derived simply by replacing the
electron with a charged conductive plate with the same area as the junction electrodes. φc(x)

for closed SW, which we write as φclosed
c (x), is given by

φclosed
c (x) = −

∫ x

0
(EL + ER) dx ′ = − e

2C

(
x

d
− x2

d2

)
+

Q0

C

x

d
(2)

where EL = QL/2Cd, ER = −QR/2Cd, QL = −Q0 + Ql, QR = Q0 + Qr and Q0 = CV .
φc(x) for the single-electron box, which we will write as φ

open
c (x), can be derived similarly.

The only difference is that image charges are not supplied by the voltage source; hence
QL = −Q0 + e and QR = Q0:

φopen
c (x) = −

(
e

2C
− Q0

C

)
x

d
. (3)

In either case, the last term in equation (1) can be identified with the electrostatic free-
energy difference �F , which is x-dependent in this study. Thus we obtain the following simple
prescription for the effective static barrier shape:

Ueff(x) = U(x) + �F(x) (4)

where U(x) = Ub(x) − eφim(x) and �F(x) = −eφc(x). In the former case (SW closed),
Coulomb blockade does not occur because always �F(d) < 0 for V > 0. In the latter case
(SW open), �F(d) > 0 if Vi < e/2C, and Coulomb blockade does occur. Equation (4) is,
therefore, consistent with the generally accepted theory of single-electron tunnelling [11]. It
is important to notice that, in the latter, Ueff(x) is different from both the initial and the final
barrier shapes. This is crucial for physical validity of the junction’s characteristics. Use of
either the initial or the final barrier shape can give rise to an unphysical effect, e.g. Maxwell’s
demon [12].

On comparison of the barrier shapes of the two types of junction under the same effective
bias voltage Veff = −�F/e, we find

U closed
eff (x) = U

open
eff (x) +

(
x

d
− x2

d2

)
e2

2C
. (5)

Here U closed
eff (x) and U

open
eff (x) are the effective static barrier energy Ueff(x) for the ‘closed’ and

‘open’ junctions, respectively. Note that Veff is the output of the voltage source that biases
the junction if it is voltage biased. In other words, −�F = eVeff can be regarded as the
chemical potential difference across the junction, irrespective of the state of SW (see figure 1).
Therefore, if the I–V curve of a voltage-biased junction is given by I (V ), that for the same
junction in a circuit is I (Veff) [6], supposing the correction which we are dealing with can be
ignored.

Equation (3) may be rewritten in a C-independent form as φ
open
c (x) = xVeff/d, and so be

U
open
eff (x) because of equation (4). Consequently, in an ‘open’ junction, the electron tunnelling

rate per unit area from the initial charge configuration, γ +
open, and the rate for the reverse process,

γ −
open, do not depend on C for a given Veff†. The current density, defined by j = e(γ + − γ −)‡,

† Vi and Vf depend on C through Vi,f = Veff ± e/2C.
‡ j does not describe the dynamical current change within a tunnelling process.
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is also independent of C as expected. In contrast, the rates for a ‘closed’ junction, γ +
closed and

γ −
closed, do depend on C as is clear from equation (5). The corollary is that the current density

jclosed is C-dependent and that the current Iclosed is not scaled in proportion to the area of the
tunnel junction.

Hereafter we concentrate on the ‘closed’ junction and its current scaling behaviour. Our
concern is whether there is a possibility that one can observe it experimentally. It might be
observable if U

open
eff (x) and e2/2C are of comparable order. GaAs/AlyGa1−yAs/GaAs tunnel

junctions are the systems of choice for the present purpose because it is possible to fabricate
very low and thick tunnel barriers that satisfy ωsτBL � 1. This can be done in a well-controlled
manner with the use of molecular beam epitaxy [10]. We consider a possible experiment using
the following set of parameters: Al content y = 0.11, conduction electron concentration in the
electrodes ND = 1018 cm−3, barrier thickness d = 40 nm and temperature 4.2 K. These will
give a conduction band discontinuity of 92 meV, ωs � 4.7 × 1013 rad s−1, τBL ∼ 2 × 10−13 s
and measurable tunnel current at a small bias voltage. We have calculated tunnel current
densities by solving a one-dimensional Schrödinger equation using a bulk model. We used
an approximate formula for the static image potential proposed by Simmons [13, 14], with a
slight modification:

φim(x) = 5.75d

ε∞[(m − 1)d + x](md − x)
(6)

where ε∞ � 10.6 is the high-frequency relative dielectric constant of the barrier layer and m is
a constant slightly larger than unity†. In equation (6), d and x are in ångströms and φim(x)

is in volts. Shown in figure 3 is the normalized closed-current density K = jclosed/jopen as
a function of the effective capacitance C. Were it not for the last term in equation (5), K

would be unity. This result suggests that the effect could be noticeable at C ∼ 10−16 F or
less. One could check the scaling behaviour by preparing two voltage-biased tunnel junctions
with different areas and comparing the currents that flow through them. Figure 4 shows the
tunnel currents and K with respect to the net junction area A, which excludes the depletion

† Strictly, d is the distance between the image planes.
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Figure 3. K = jclosed/jopen versus C = ε∞ε0A/d with constant d. The inset shows the
corresponding barrier shapes at C = 2 aF. Veff = 10 mV.
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Figure 4. The thick solid and broken lines show the current (defined as jA) for the ‘closed’
and the ‘open’ junction, respectively. The thick dotted line shows K = jclosed/jopen. The ideal
parallel-plate capacitor model is used for the thick lines. The thin solid and dotted lines represent
counterparts for a worst-case estimate. Veff = 10 mV.

layer due to surface Fermi-level pinning. For given net junction areas A1 and A2, one finds
I2/I1 = (K2/K1)(A2/A1). It might be possible to observe K2/K1 > 1 in the voltage-biased
tunnel junctions at dimensions of

√
A ∼ 10−7 m, with A2/A1 ∼ 2.

As noted above, A is the net area of the tunnel junction, and therefore the actual cross
section of the device (pillar) is larger than A. However, it is, in principle, possible to evaluate
the depletion length. We have performed a two-dimensional device simulation using Spicer’s
two-level model [15], assuming a surface-state density of 5×1012 cm−2. The surface depletion
length is calculated to be about 40 nm. Thus one could estimate A from the actual pillar size.

We have so far assumed the capacitance C to be given by C = ε∞ε0A/d. However,
deviation from the parallel-plate capacitance, which is valid only if

√
A � d, cannot be

neglected with the parameters suggested above. A numerical calculation that takes into account
the exact structure of the device is required to obtain φc(x). Instead of using such a method,
we evaluated the capacitance between two parallel square conductors embedded in a dielectric
matrix with dielectric constant ε∞, taking account of a fringing electric field at the edges. Then
we used the C thus calculated in equations (2) and (3). The C calculated in this way is larger
than that for a pillar structure, thereby giving a worst-case estimate. The results are shown in
figure 4 by thin lines. The effect would become more pronounced if the barrier layer had an
engineered profile [16], which also is realizable in the GaAs/AlyGa1−yAs/GaAs system.

In conclusion, we have shown that the current in a voltage-biased ultrasmall tunnel junction
is scaled anomalously as the junction size is varied, due to the single-electron charging effect.
We suggested a possible experiment with GaAs/AlyGa1−yAs/GaAs systems and presented a
rough estimate of the size of the effect. Finally, we point out that no real system strictly follows
the global rule because of the environmental impedance [17], which we have ignored. We also
add that there are other effects (quantum size effect, Kondo effect, Fermi-edge singularity etc)
that are known to be important at low temperatures. These may make the experiment much
more involved. Rigorous treatment of such effects, however, is beyond the scope of this article.
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Guéret P, Marclay E and Meier H 1988 Solid State Commun. 68 977
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